88 research outputs found

    Improved correction for the tissue fraction effect in lung PET/CT imaging

    Get PDF
    Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this 'tissue fraction effect' (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K1 and Ki along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34-80% in the best case and 29-96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted

    Density variation during respiration affects PET quantitation in the lung

    Get PDF
    PET quantitation depends on the accuracy of the CT-derived attenuation correction map. In the lung, respiration leads to both positional and density mismatches, causing PET quantitation errors at lung borders but also within the whole lung. The aim of this work is to determine the extent of the associated errors on the measured time activity curves (TACs) and the corresponding kinetic parameter estimates. 5 patients with idiopathic pulmonary fibrosis underwent dynamic 18 F-FDG PET and cine-CT imaging as part of an ongoing study. The cine-CT was amplitude gated using PCA techniques to produce end expiration (EXP), end inspiration (INS) and mid-breathing cycle (MID) gates representative of a short clinical CT acquisition. The ungated PET data were reconstructed with each CT gate and the TACs and kinetic parameters compared. Patient representative XCAT simulations with varying lung density, both with and without motion, were also produced to represent the above study allowing comparison of true to measured results. In all cases, the obtained PET TACs differed with each CT gate. For ROIs internal to the lung, the effect was dominated by changes in density, as opposed to motion. The errors in the TACs varied with time, providing evidence that errors due to attenuation mismatch depend on activity distribution. In the simulations, some kinetic parameters were over- and under-estimated by a factor of 2 in the INS and EXP gates respectively. For the patients, the maximum variation in kinetic parameters was 20%. Our results show that whole lung density changes during the respiratory cycle have a significant impact on PET quantitation. This is especially true of the kinetic parameter estimates as the extent of the error is dependent on tracer distribution which varies with time. It is therefore vital to use matched PET/CT for attenuation correction

    Joint reconstruction of activity and attenuation in dynamic PET

    Get PDF
    Joint reconstruction of attenuation and emission in positron emission tomography (PET) using the maximum likelihood activity and attenuation estimation (MLAA) algorithm was proposed in the past. However, cross-talk between the activity and attenuation estimation limits the usefulness of MLAA for PET data without time-of-flight (TOF) information. This work introduces dynamic MLAA (dMLAA), an extension of the MLAA algorithm for dynamic data, to jointly reconstruct the activity distributions and a single attenuation map. The hypothesis is that using information from multiple dynamic emission frames may improve the estimated attenuation map compared to using static PET data. Preliminary results using dMLAA algorithm showed that use of multiple dynamic emission frames slightly improves the reconstructed attenuation map (especially in bones, cavities and lesion area) compared to using a single emission frame. However, without TOF, the reconstructed map still suffers from ill-posedness of the problem despite the additional dynamic information. The reconstruction may be improved for tracers that present a higher inter- and intra-dynamic frame contrast and edge variability

    Issues in quantification of registered respiratory gated PET/CT in the lung

    Get PDF
    PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air Fraction Correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent 18F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on an RPM signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise

    Role of 18F FDG PET/CT as a novel non-invasive biomarker of inflammation in chronic obstructive pulmonary disease

    Get PDF
    A characteristic feature of Chronic Obstructive Pulmonary Disease (COPD) is an abnormal inflammatory response in the lungs to inhaled particles or gases. The ability to assess and monitor this response in the lungs of COPD patients is important for understanding the pathogenic mechanisms, but also provides a measure of the activity of the disease. Disease activity is more likely to relate to lung inflammation rather than the degree of airflow limitation as measured by the FEV1. Preliminary studies have shown the 18F fluorodeoxyglucose positron emission tomography (18F FDG-PET) signal, as a measure of lung inflammation, is quantifiable in the lungs and is increased in COPD patients compared to controls. However, the methodology requires standardisation and any further enhancement of the methodology would improve its application to assess inflammation in the lungs. I investigated various methods of assessing FDG uptake in the lungs and assessed the reproducibility of these methods, and particularly evaluated whether the data was reproducible or not in the COPD patients (smokers and ex-smokers). This data was then compared with a group of healthy controls to assess the role of dynamic 18F FDG-PET scanning as a surrogate marker of lung inflammation. My data showed a good reproducibility of all methods of assessing FDG lung uptake. However, using conventional Patlak analysis, the uptake was not statistically different between COPD and the control group. Encouraging results in favour of COPD patients were nonetheless shown using compartmental methods of assessing the FDG lung uptake, suggesting the need to correct for the effect of air and blood (tissue fraction effect) when assessing this in a highly vascular organ like the lungs. A prospective study analysis involving a bigger cohort of COPD patients would be desirable to investigate this further

    Cohort study of Western Australia computed tomography utilisation patterns and their policy implications

    Get PDF
    Background: Computed tomography (CT) scanning is a relatively high radiation dose diagnostic imaging modality with increasing concerns about radiation exposure burden at the population level in scientific literature. This study examined the epidemiology of adult CT utilisation in Western Australia (WA) in both the public hospital and private practice settings, and the policy implications. Methods: Retrospective cohort design using aggregate adult CT data from WA public hospitals and Medical Benefits Schedule (MBS) (mid-2006 to mid-2012). CT scanning trends by sex, age, provider setting and anatomical areas were explored using crude CT scanning rates, age-standardised CT scanning rates and Poisson regression modelling. Results: From mid-2006 to mid-2012 the WA adult CT scanning rate was 129 scans per 1,000 person-years (PY). Females were consistently scanned at a higher rate than males. Patients over 65 years presented the highest scanning rates (over 300 scans per 1,000 PY). Private practice accounted for 73% of adult CT scans, comprising the majority in every anatomical area. In the private setting females predominately held higher age-standardised CT scanning rates than males. This trend reversed in the public hospital setting. Patients over 85 years in the public hospital setting were the most likely age group CT scanned in nine of ten anatomical areas. Patients in the private practice setting aged 85+ years were relatively less prominent across every anatomical area, and the least likely age group scanned in facial bones and multiple areas CT scans.Conclusion: In comparison to the public hospital setting, the MBS subsidised private sector tended to service females and relatively younger patients with a more diverse range of anatomical areas, constituting the majority of CT scans performed in WA. Patient risk and subsequent burden is greater for females, lower ages and some anatomical areas. In the context of a national health system, Australia has various avenues to monitor radiation exposure levels, improve physician training and modify funding mechanisms to ensure individual and population medical radiation exposure is as low as reasonably achievable

    Some recommendations for developing multidimensional computerized adaptive tests for patient-reported outcomes

    Get PDF
    PURPOSE: Multidimensional item response theory and computerized adaptive testing (CAT) are increasingly used in mental health, quality of life (QoL), and patient-reported outcome measurement. Although multidimensional assessment techniques hold promises, they are more challenging in their application than unidimensional ones. The authors comment on minimal standards when developing multidimensional CATs. METHODS: Prompted by pioneering papers published in QLR, the authors reflect on existing guidance and discussions from different psychometric communities, including guidelines developed for unidimensional CATs in the PROMIS project. RESULTS: The commentary focuses on two key topics: (1) the design, evaluation, and calibration of multidimensional item banks and (2) how to study the efficiency and precision of a multidimensional item bank. The authors suggest that the development of a carefully designed and calibrated item bank encompasses a construction phase and a psychometric phase. With respect to efficiency and precision, item banks should be large enough to provide adequate precision over the full range of the latent constructs. Therefore CAT performance should be studied as a function of the latent constructs and with reference to relevant benchmarks. Solutions are also suggested for simulation studies using real data, which often result in too optimistic evaluations of an item bank's efficiency and precision. DISCUSSION: Multidimensional CAT applications are promising but complex statistical assessment tools which necessitate detailed theoretical frameworks and methodological scrutiny when testing their appropriateness for practical applications. The authors advise researchers to evaluate item banks with a broad set of methods, describe their choices in detail, and substantiate their approach for validation

    Dietary behaviors related to cancer prevention among pre-adolescents and adolescents: the gap between recommendations and reality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diet is thought to play an important role in cancer risk. This paper summarizes dietary recommendations for cancer prevention and compares these recommendations to the dietary behaviors of U.S. youth ages 8-18.</p> <p>Methods</p> <p>We identified cancer prevention-related dietary recommendations from key health organizations and assessed dietary consumption patterns among youth using published statistics from the National Health and Nutrition Examination Survey, the national Youth Risk Behavior Survey, and other supplemental sources.</p> <p>Results</p> <p>Cancer prevention guidelines recommend a diet rich in fruits, vegetables, and whole grains, recommend limiting sugary foods and beverages, red and processed meats, sodium, and alcohol, and recommend avoiding foods contaminated with carcinogens. However, youth typically do not meet the daily recommendations for fruit, vegetable, or whole grain consumption and are over-consuming energy-dense, sugary and salty foods.</p> <p>Conclusions</p> <p>A large discrepancy exists between expert recommendations about diet and cancer and actual dietary practices among young people and points to the need for more research to better promote the translation of science into practice. Future research should focus on developing and evaluating policies and interventions at the community, state and national levels for aligning the diets of youth with the evolving scientific evidence regarding cancer prevention.</p

    Reticular synthesis and the design of new materials

    Full text link
    The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62718/1/nature01650.pd
    corecore